If \(x = 2 + \sqrt{3}\), then \( \frac{1}{x} =\):
If \(x = 2 + \sqrt{3}\), then \( \frac{1}{x} =\):
\(-\sqrt{3}\) | |
\(2 - \sqrt{3}\) | |
\(3 + 2\) | |
\(-2 + \sqrt{3}\) |
\(-\sqrt{3}\) | |
\(2 - \sqrt{3}\) | |
\(3 + 2\) | |
\(-2 + \sqrt{3}\) |
\(a^x = y\) | |
\(y^x = a\) | |
\(y^a = x\) | |
\(y = a^x\) |
\(5 + i\) | |
\(-5 + i\) | |
\(-5 - i\) | |
\(5 - i\) |
Isosceles | |
Scalene | |
Right angled | |
Equilateral |
Equal | |
Similar | |
Unequal | |
Different |
Same size and shape | |
Concurrent | |
Parallel | |
Different |
Concurrent | |
Perpendicular | |
Parallel | |
Congruent |
Square | |
Rhombus | |
Parallelogram | |
Trapezium |
\(\sim\) | |
\( \equiv \) | |
\(\Delta\) | |
\(=\) |
0 | |
2 | |
\(\sqrt{2}\) | |
1 |
I | |
IV | |
III | |
II |
\(x \leq 10\) | |
\(x > 10\) | |
\(x < 10\) | |
\(x \geq 8\) |
\( \frac{4a}{9a^2 - b^2} \) | |
\( \frac{4a - b}{9a^2 - b^2} \) | |
\( \frac{a}{9a^2 - b^2} \) | |
\( \frac{b}{9a^2 - b^2} \) |
-8 | |
8 | |
4 | |
-4 |
\( -x + \sqrt{y}\) | |
\( -x - \sqrt{y}\) | |
\(x - \sqrt{y}\) | |
\( \sqrt{x - y}\) |
\(m \log_a n\) | |
\( \log_a n \) | |
\( \log_a m \) | |
\(n \log_a m\) |
-1 | |
i | |
1 | |
-i |
\(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\) | |
\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\) | |
\(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\) | |
\(\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}\) |
24000 JK-1 | |
25000 JK-1 | |
22000 JK-1 | |
23000 JK-1 |
Speed of sound | |
Speed of light | |
Speed of earth | |
Speed of electron |