The center of the circle (x-1)<sup>2</sup>+(y+3)<sup>2</sup> is:
The center of the circle (x-1)2+(y+3)2 is:
(1,-3) | |
(-1,-3) | |
(1,3) | |
(-1,3) |
(1,-3) | |
(-1,-3) | |
(1,3) | |
(-1,3) |
\[{h^2} - ab > 0\] | |
\[{h^2} - ab \ne 0\] | |
h2 - ab = 0 | |
\[{h^2} - ab < 0\] |
Not Equal | |
None of These | |
Equal | |
Opposite in Signs |
None of these | |
1 | |
2 | |
0 |
\(y = \cot x + c\) | |
\(y = \sin x + c\) | |
\(y = \tan x + c\) | |
\(x = \frac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\) |
\(y = {e^x}\) | |
\(y = x{e^{ - x}}\) | |
\(y = c{e^{ - x}}\) | |
\(y = {e^{ - x}}\) |
y = cosx + c | |
y = secx + c | |
\(y = {\csc ^2}x + c\) | |
y = tanx + c |
\(c{e^{ - x}}\) | |
\({e^x}\) | |
\(c{e^x}\) | |
\({e^{ - x}}\) |
cscx+c | |
-cot+c | |
cotx+c | |
-cscx+c |
None of these | |
Definite integral | |
Differentiation | |
Integration by parts |
Positive | |
Negative | |
Positive or negative | |
Positive and negative |
\(\frac{{\pi}}{2}\) | |
\(\frac{{ - \pi }}{2}\) | |
\(\frac{ -2 }{\pi }\) | |
\(\frac{2}{\pi }\) |
\(\frac{a}{{{{(\ln a)}^2}}}\) | |
\(\frac{{{a^2}}}{{\ln a}}\) | |
\(\frac{{{a^2}}}{{\ln a}} - \frac{a}{{\ln a}}\) | |
\(\frac{{{a^2}}}{{{{(\ln a)}^2}}}\) |
\(\frac{\pi }{4}\) | |
\(\frac{\pi }{3}\) | |
\(\frac{\pi }{12}\) | |
\(\frac{\pi }{6}\) |
\({e^x}\sin x + c\) | |
\( - {e^x}\cos x + c\) | |
\({e^x}\cos x + c\) | |
\( - {e^x}\sin x + c\) |
\(x\ln x - x + c\) | |
\(x\ln x + x + c\) | |
\(x - x\ln x + c\) | |
\(x + x\ln x + c\) |
\({e^x}.\frac{{{x^2}}}{2}\) | |
\({e^x}\) | |
\(x{e^x}\) | |
None of these |
\(\sqrt {\tan x} + c\) | |
\(\ln \sqrt {\tan x} + c\) | |
\(2\sqrt {\tan x} + c\) | |
\( - 2\sqrt {\tan x} + c\) |
cos-1x | |
sin-1x | |
-sin-1x | |
-cos-1x |
\(\frac{1}{2}\left( {x + \sin 2x} \right) + c\) | |
\(\frac{1}{2}\left( {x - \sin 2x} \right) + c\) | |
\(\frac{1}{2}\left( {x + \frac{{\sin 2x}}{2}} \right) + c\) | |
\(\frac{1}{2}\left( {x - \frac{{\sin 2x}}{2}} \right) + c\) |