Solved Math of 9th Class Paper 2024 G2 Lahore

Solved math of 9th class

Solved Math of 9th Class Paper 2024 G2 Lahore Board Mathematics (Science) – Essay Type Questions Session: 2020-2022 to 2023-2025
Total Marks: 60
Time Allowed: 2 Hours 10 Minutes

9th class Mathematics solved Past Paper 2024 Group 2 Lahore Board by FG STudy.com

for unsolved past papers go to this link of fgstudy

http://Thanks for PakStudy Team

Q-2(i) Matrix Multiplication

Given:

\( A = \begin{bmatrix} -4 & 2 \\ 2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} -3 \\ -2 \end{bmatrix} \)

To find \( AB \):

\( AB = \begin{bmatrix} -4 & 2 \\ 2 & 1 \end{bmatrix} \times \begin{bmatrix} -3 \\ -2 \end{bmatrix} \)

Step-by-step calculation:

  • First row: \((-4)(-3) + (2)(-2) = 12 – 4 = 8\)
  • Second row: \((2)(-3) + (1)(-2) = -6 – 2 = -8\)

Final result:

\( AB = \begin{bmatrix} 8 \\ -8 \end{bmatrix} \)

Q-2(ii) Simplify \( x^{5^2} \div (x^5)^2 \)

Step-by-step solution:

  1. \( 5^2 = 25 \), so \( x^{5^2} = x^{25} \).
  2. \( (x^5)^2 = x^{5 \times 2} = x^{10} \).
  3. Using the rule of exponents for division: \( x^{25} \div x^{10} = x^{25-10} = x^{15} \).

Final result:

\( x^{15} \)

Q-2(ii) Find the value of \(x\) and \(y\) if \(x + iy + 1 = 4 – 3i\):

Separating real and imaginary parts:

  • Real part: \(x + 1 = 4 \Rightarrow x = 3\)
  • Imaginary part: \(iy = -3i \Rightarrow y = -3\)

Answer: \(x = 3, y = -3\)

Q-2(iv) Find the value of \(x\):

Given:

\(\log_{64} 8 = \frac{x}{2}\)

\(\log_{64} 8 = \frac{1}{2}\) (since \(64^{1/2} = 8\))

\(\frac{1}{2} = \frac{x}{2} \Rightarrow x = 1\)

Answer: \(x = 1\)

Q-2(v) Find the value of \(x\):

Given:

\(\log x = 0.1821\)

Using the property of logarithms:

\(x = 10^{0.1821}\)

Approximation:

\(x \approx 1.52\)

Answer: \(x \approx 1.52\)

Q-2(vi) Simplify:

\(\left(\sqrt{2} + \frac{1}{\sqrt{3}}\right)\left(\sqrt{2} – \frac{1}{\sqrt{3}}\right)\)

Using the difference of squares formula:

\((a + b)(a – b) = a^2 – b^2\)

\(\left(\sqrt{2}\right)^2 – \left(\frac{1}{\sqrt{3}}\right)^2 = 2 – \frac{1}{3}\)

Final result:

\(2 – \frac{1}{3} = \frac{6}{3} – \frac{1}{3} = \frac{5}{3}\)

Answer: \(\frac{5}{3}\)

Q-2(vii) If \(x = \sqrt{3} + 2\), find \(x + \frac{1}{x}\):

Given:

\(x = \sqrt{3} + 2\)

\(\frac{1}{x} = \frac{1}{\sqrt{3} + 2}\)

Rationalizing the denominator:

\(\frac{1}{x} = \frac{\sqrt{3} – 2}{(\sqrt{3} + 2)(\sqrt{3} – 2)} = \frac{\sqrt{3} – 2}{-1} = -\sqrt{3} + 2\)

Adding \(x + \frac{1}{x}\):

\((\sqrt{3} + 2) + (-\sqrt{3} + 2) = 4\)

Answer: \(x + \frac{1}{x} = 4\)

Q-2(viii) Factorize:

Given:

\(4x^2 + 12x + 5\)

Splitting the middle term:

\(4x^2 + 10x + 2x + 5\)

Grouping terms:

\((4x^2 + 10x) + (2x + 5)\)

\(2x(2x + 5) + 1(2x + 5)\)

Factoring:

\((2x + 5)(2x + 1)\)

Answer: \((2x + 5)(2x + 1)\)

Q-2(ix) Factorize:

Given:

\(1 – 27y^3\)

Using the difference of cubes formula:

\(a^3 – b^3 = (a – b)(a^2 + ab + b^2)\)

Here, \(a = 1\) and \(b = 3y\):

\(1 – 27y^3 = (1 – 3y)(1^2 + 1(3y) + (3y)^2)\)

\(= (1 – 3y)(1 + 3y + 9y^2)\)

Answer: \((1 – 3y)(1 + 3y + 9y^2)\)

Q-3 (i) Find the LCM of the expressions x² – 25x + 100 and x² – x – 20

To find the LCM, we factorize both expressions:

x² – 25x + 100 = (x – 10)(x – 10)

x² – x – 20 = (x – 5)(x + 4)

The LCM will be the product of all unique factors:

LCM = (x – 10)(x – 5)(x + 4)

Q-3 (ii) Solve the inequality:

\[ \frac{4 – \frac{1}{2}x}{2} \geq -7 + \frac{1}{4}x \]

Solution:

\[ \frac{4 – \frac{1}{2}x}{2} = 2 – \frac{1}{4}x \]

\[ 2 – \frac{1}{4}x \geq -7 + \frac{1}{4}x \]

\[ 2 + 7 \geq \frac{1}{2}x \]

\[ 9 \geq \frac{1}{2}x \]

\[ x \leq 18 \]

Q-3 (iii) Solve the equation:

\[ \frac{x – 3}{2} – \frac{x – 2}{2} = -1 \]

Solution:

\[ \frac{(x – 3) – (x – 2)}{2} = \frac{-1}{2} \]

\[ \frac{-1}{2} = -1 \]

Q-3 (iv) Find the values of \(m\) and \(c\) by expressing the line \(2x – 3y = -5\) in the form \(y = mx + c\):

Solution:

\[ 2x – 3y = -5 \]

\[ -3y = -2x – 5 \]

\[ y = \frac{2}{3}x + \frac{5}{3} \]

Here, \(m = \frac{2}{3}\) and \(c = \frac{5}{3}\).

Q-3 (v) Draw the graph of \(x = -3\):

This equation represents a vertical line passing through \(x = -3\) on the Cartesian plane.

Q-3 (vi) Find the distance between the points \(A(6, -2)\) and \(B(6, -3)\):

Solution:

Distance formula: \[ d = \sqrt{(x_2 – x_1)^2 + (y_2 – y_1)^2} \]

\[ d = \sqrt{(6 – 6)^2 + (-3 – (-2))^2} \]

\[ d = \sqrt{0^2 + (-1)^2} = \sqrt{1} = 1 \]

The distance is \(1\) unit.

Q-3 (vii) Find the midpoint of the line segment joining the points \(A(2, -6)\) and \(B(3, -6)\):

Solution:

Midpoint formula: \[ \text{Midpoint} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \]

\[ \text{Midpoint} = \left(\frac{2 + 3}{2}, \frac{-6 + (-6)}{2}\right) \]

\[ \text{Midpoint} = \left(2.5, -6\right) \]

Q-3 (viii) Define congruent triangles:

Definition:

Congruent triangles are triangles that have the same size and shape. This means:

  • Their corresponding sides are equal in length.
  • Their corresponding angles are equal in measure.

Notation: If \(\triangle ABC\) is congruent to \(\triangle DEF\), we write:

\[ \triangle ABC \cong \triangle DEF \]

Q-3 (ix) Define a parallelogram:

Definition:

A parallelogram is a quadrilateral in which both pairs of opposite sides are parallel and equal in length.

Properties:

  • Opposite angles are equal.
  • Adjacent angles are supplementary (add up to \(180^\circ\)).
  • Diagonals bisect each other.