Mathematics MCQS for class 12 with Answers

? ax dx =

a

^{x}lna +clna/a

^{x}+ cl/a

^{n}lna + cax/lna + c

The conditions through which the orbitrary constants involving in the differential equation can be determined is called

1/2 (ln Sin x)

^{2}+ cn-initial value conditions

Final value condition

none

?sec2 x/ tan dx + ?cosec

^{2}x/cotx dx =in tan

*x + c*In cot

*x + c*2 in cot x + c

2 in tan

*x + c*? Tan(ax+b)dx= _________

1/b ln |Sec(ax+b)| + c

1/a ln |Sec(ax+b)| + c

1/a Cos(ax+b) + c

ln |Sec(ax+b)| + c

?lnx dx= ______________

ln x + x + c

ln |Sec x+ Tan x| + c

x lnx + x + c

xln x + c

?e

^{x}[Cos x -sin x] dx =1/a e

^{ax+b}+ ce

^{x}tanx + ce

^{x}Sin + ce

^{ax}sinx + c1/b ln|ax-b| + c

1/b ln|ax+b| + c

3

(ax+b)/b+c

? Sec x dx= _________

ln |Sec x+ Cot x| + c

Sin x – x Cos x + c

ln |Sin x+ Cot x| + c

ln |Tan x+ Cosec x| + c

If

Derivative

Integrand

Differential

Integral

If

^{2}?_{1}(3x^{2}+2x – k) dx = 12 then k =0

1

-1

y = ce

^{-x}*Continue Reading Go to Next Page*